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Abstract— In this paper, we introduce a novel approach to
automatically detect salient regions in an image. Our approach
consists of global and local features, which complement each
other to compute a saliency map. The first key idea of our
work is to create a saliency map of an image by using a
linear combination of colors in a high-dimensional color space.
This is based on an observation that salient regions often
have distinctive colors compared with backgrounds in human
perception, however, human perception is complicated and
highly nonlinear. By mapping the low-dimensional red, green,
and blue color to a feature vector in a high-dimensional color
space, we show that we can composite an accurate saliency map
by finding the optimal linear combination of color coefficients
in the high-dimensional color space. To further improve the
performance of our saliency estimation, our second key idea is
to utilize relative location and color contrast between superpixels
as features and to resolve the saliency estimation from a trimap
via a learning-based algorithm. The additional local features
and learning-based algorithm complement the global estimation
from the high-dimensional color transform-based algorithm.
The experimental results on three benchmark datasets show
that our approach is effective in comparison with the previous
state-of-the-art saliency estimation methods.

Index Terms— Salient region detection, superpixel, trimap,
random forest, color channels, high-dimensional color space.

I. INTRODUCTION

SALIENT region detection is important in image under-
standing and analysis. Its goal is to detect salient regions

in an image in terms of a saliency map, where the detected
regions would draw humans’ attention. Many previous studies
have shown that salient region detection is useful, and it
has been applied to many applications including segmenta-
tion [20], object recognition [21], image retargetting [26],
photo rearrangement [27], image quality assessment [28],
image thumbnailing [29], and video compression [30].

Manuscript received April 9, 2015; revised July 30, 2015 and
September 14, 2015; accepted October 9, 2015. Date of publication Octo-
ber 26, 2015; date of current version November 18, 2015. This work
was supported by the National Research Foundation of Korea within the
Ministry of Science, ICT and Future Planning through the Korean Government
under Grant NRF-2014R1A2A2A01003140. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Dacheng Tao. (Corresponding author: Junmo Kim.)

J. Kim, D. Han, and J. Kim are with the Department of Electrical
Engineering, Korea Advanced Institute of Science and Technology,
Daejeon 305-701, Korea (e-mail: jhkim89@kaist.ac.kr; dongyoon.han@
kaist.ac.kr; junmo.kim@kaist.ac.kr).

Y.-W. Tai is with SenseTime Group Ltd., Hong Kong (e-mail: yuwing@
gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2495122

Fig. 1. Examples of our salient region detection from a trimap. (a) Inputs.
(b) Trimaps. (c) Saliency maps. (d) Salient regions.

The development of salient region detection has often
been inspired by the concepts of human visual perception.
One important concept is how “distinct to a certain extent” [37]
the salient region is compared to the other parts of an image.
As color is a very important visual cue to human, many salient
region detection techniques are built upon distinctive color
detection from an image.

In this paper, we propose a novel approach to automatically
detect salient regions in an image. Our approach first esti-
mates the approximate locations of salient regions by using
a tree-based classifier. The tree-based classifier classifies each
superpixel as either foreground, background or unknown. The
foreground and background are regions where the classifier
classifies salient and non-salient regions with high confidence.
The unknown regions are the regions with ambiguous features
where the classifier classifies the regions with low confidence.
The foreground, background and unknown regions form an
initial trimap, and our goal is to resolve the ambiguity in the
unknown regions to estimate accurate saliency map. From the
trimap, we propose two different methods, high-dimensional
color transform (HDCT)-based method and local learning-
based method to estimate the saliency map. The results of
these two methods will be combined together to form our final
saliency map. Fig. 1 shows examples of our saliency map and
salient regions from trimaps. The overview of our method is
presented in Fig. 2. Our algorithm is performed in superpixel
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Fig. 2. Overview of our algorithm: (a) Input image. (b) Over-segmentation to superpixels. (c) Initial saliency trimap. (d) Global salient region detection via
HDCT. (e) Local salient region detection via random forest. (f) Our final saliency map.

level in order to reduce computations (Fig. 2 (b)). The
initial saliency trimap composed of a foreground candidate,
background candidate, and unknown regions using existing
saliency detection techniques are shown in Fig. 2 (c).

The HDCT-based method is a global method. The
motivation is to find color features which can efficiently
separate salient regions and background, as illustrated
in Fig. 4. The key idea is to exploit the power of different
color space representations to resolve the ambiguities of
colors in the unknown regions. The high dimensional color
transform combines several representative color spaces such as
red, green, and blue (RGB), CIELab, and HSV together with
different power-law transformations to enrich the representa-
tive power of the HDCT space. Note that each of the color
spaces has a different measurement about color similarity. For
example, two colors in RGB with short distance may have
long distance from each other in HSV or CIELab color spaces.
Using the HDCT, we map a low-dimensional RGB color
tuple into a high-dimensional feature vector. Starting from a
few initial color examples of the detected salient regions and
backgrounds, the HDCT-based method estimates an optimal
linear combination of color values in the HDCT space that
results in a per-pixel saliency map as shown in Fig. 2 (d).

The local learning-based method utilizes a random
forest [50] with local features, i.e. relative location and color
contrast between superpixels. Since the HDCT-based method
uses only color information, it can be easily affected by
texture and noise. We overcome this limitation by using
location and contrast features. If a superpixel is closer to the
foreground regions than the background regions, it has higher
chance to be a salient region. Based on this assumption, we
train a random forest classifier to evaluate the saliency of
a superpixel by comparing the distance and color contrast
of a superpixel to the K-nearest foreground superpixels and
the K-nearest background superpixels. Fig. 2 (e) shows an
example of saliency map obtained by the local learning-based
method. The value of K for the K-nearest neighbor is
systemically found by measuring the performance of the local
learning-based method on a validation set. We combine the
saliency maps from the HDCT-based method and the local
learning-based method by weighted combination (Fig. 2 (f)).

Similar to the value of K in local learning-based method,
the combination weights are determined by evaluating the
performance of the saliency map on a validation set.

A shorter version of this work was presented in [2], where
the focus was the HDCT-based method. This paper improves
our previous work by introducing the new local learning-
based method, and the weighted combination of saliency
map. Although the work in [2] also utilizes spatial refine-
ment to enhance performance of the HDCT-based method,
our new local learning-based method outperforms the spatial
refinement method. The experimental results show that using
the learning-based local saliency detection method, instead
of the spatial refinement, significantly helps to improve the
performance of our algorithm. Finally, we have also examined
the effects of different initialization of trimap. We notice
that by using the DRFI method [33] as the initial saliency
trimap, we can further improve the performance of DRFI since
our HDCT-based and local learning based methods are able
to resolve ambiguities in low confidence regions in saliency
detection.

The key contributions of our paper are summarized as
follows:

• An HDCT-based salient region detection algorithm [2] is
introduced. The key idea is to estimate the linear com-
bination of various color spaces that separate foreground
and background regions.

• We propose a local learning-based saliency detection
method that considers local spatial relations and color
contrast between superpixels. This relatively simple
method has low computational complexity and is an
excellent complement to the HDCT-based global saliency
map estimation method. In addition, the two resulting
saliency maps are combined in a principled way via a
supervised weighted sum-based fusion.

• We showed that our proposed method can further improve
performance of other methods for salient region detection,
by using their results as the initial saliency trimap.

The remainder of this paper is organized as
follows. Section II reviews related works on salient region
detection. Section III describes the initial trimap generation
method. Section IV presents the two methods for saliency
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estimation from a trimap. It also introduces the HDCT-based
global saliency estimation and regression-based local saliency
estimation methods. Section V presents the experimental
results and comparisons with several state-of-the-art salient
region detection methods. Section VI concludes our paper
with discussions.

II. RELATED WORKS

This section reviews representative state-of-the-art salient
region detection methods. A survey and a benchmark com-
parison of state-of-the-art salient region detection algorithms
are presented in [3] and [4] respectively. As reported in [4],
our HDCT-based method presented in [2] is one of the top six
algorithms in salient region detection.

Local-contrast-based models detect salient regions by
detecting rarity of image features in a small local region.
Itti et al. [5] proposed a saliency detection method which
utilizes visual filters called “center-surround difference” to
compute local color contrast. Harel et al. [6] suggested
a graph-based visual saliency (GBVS) model which is
based on the Markovian approach on an activation map.
This model examines the dissimilarity of center-surround
feature histograms. Goferman et al. [8] combined global and
local contrast saliency to improve detection performance.
Klein and Frintrop [10] utilized information theory and
defined the saliency of an image using the Kullback-Leibler
divergence (KLD). The KLD measures the center-surround
difference to combine different image features to compute
the saliency. Hou et al. [11] used the term “information
divergence” which expresses the non-uniform distribution of
the visual information in an image for saliency detection.

Several methods estimated saliency in superpixel level
instead of pixel-wise level to reduce the computational time.
Jiang et al. [12] performed salient object segmentation with
multiscale superpixel-based saliency and a closed boundary
prior. Their approach iteratively updates both the saliency map
and the shape prior under an energy minimization framework.
Perazzi et al. [34] decomposed an image into compact and
perceptually homogeneous elements, and then considered the
uniqueness and spatial distribution of these elements in the
CIELab color to detect salient regions. Yan et al. [14] used a
hierarchical model by computing contrast features at different
scales of an image and fused them into a single saliency
map using a graphical model. Zhu et al. [42] proposed a
background measure that characterizes the spatial layout of
image regions with a novel optimization framework.

These models tend to give a higher saliency at around edges
and texture areas that have high contrasts, where humans tend
to focus on in an image. However, these models tend to catch
only parts of an object. Also, they tend to give non-uniform
weight to the same salient object when different features
presented in the same salient object.

Global-contrast-based models use color contrast with
respect to the entire image to detect salient regions. These
models can detect salient regions of an image uniformly with
low computational complexity. Achanta et al. [7] proposed
a frequency-tuned approach to determine the center-surround
contrast using the color and luminance in the frequency

domain as features. Shen and Wu [35] divided an image into
two parts—a low-rank matrix and sparse noise—where the
former explains the background regions and the latter indicates
the salient regions. Cheng et al. [40] proposed a Gaussian
mixture model (GMM)-based abstract representation method
that simultaneously evaluates the global contrast differences
and spatial coherence to capture perceptually homogeneous
elements and improve the salient region detection accuracy.
Li et al. [43] showed that the unique refocusing capability of
light fields can robustly handle challenging saliency detection
problems such as similar foreground and background in a
single image. He and Lau [46] used a pair of flash and
no-flash images, inspired by the brightness of foreground
objects for salient region detection.

These global-contrast-based models provide reliable results
at low computational cost as they mainly consider a few
specific colors that separate the foreground and the background
of an image without using spatial relationships.

Statistical-learning-based models have also been exam-
ined for saliency detection. Wang et al. [15] proposed a
method that jointly estimates the segmentation of objects
learned by a trained classifier called the auto-context model
to enhance an appearance-based energy minimization frame-
work for salient region detection. Yang et al. [36] ranked
the similarity of image regions with foreground cues and
background cues using graph-based manifold ranking based
on affinity matrices and successfully conducted saliency detec-
tion. Siva et al. [17] used an unsupervised approach to learn
patches that are highly likely to be parts of salient objects
from unlabeled images and then sampled the object saliency
map to find object locations and detect saliency regions.
Li et al. [39] proposed a saliency measure via dense and
sparse representation errors of each image region using a set
of background templates as the basis for reconstruction, and
they constructed the saliency map by integrating multiscale
reconstruction errors. Jiang et al. [41] suggested a bottom-
up saliency detection algorithm that considers the appearance
divergence and spatial distribution of salient objects and the
background using the time property in an absorbing Markov
chain. Lu et al. [45] used an optimal set of salient seeds
obtained by learning a large margin formulation of the dis-
criminant saliency principle.

As many novel saliency detection datasets have become
available recently, supervised saliency estimation algorithms
have also been proposed. Borji and Itti [16] used comple-
mentary local and global patch-based dictionary learning for
rarity-based saliency in different color spaces—RGB and
LAB—and then combined them into the final saliency map
for saliency detection. Jiang et al. [33] proposed a multilevel
image segmentation method based on the supervised learning
approach that performed a regional saliency regressor using
regional descriptors to build a saliency map to find salient
regions.

These models are usually highly accurate and have a
simple detection structure. However, they tend to require
a lot of computational time. Therefore, superpixel-wise
saliency detection is used to overcome the high computational
complexity.
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TABLE I

FEATURES USED TO COMPUTE FEATURE VECTOR FOR EACH SUPERPIXEL

III. INITIAL SALIENCY TRIMAP GENERATION

In this section, we describe our method to detect the initial
location of salient regions in an image. Our method is a
learning-based method and it processes an image in superpixel
level. The initial saliency trimap consists of foreground candi-
date, background candidate, and unknown regions. A similar
approach has already been used in a previous method [33],
which demonstrated superiority and efficiency in their results.
However, their algorithms require considerable computational
time because their features’ computational complexity is very
large. In our work, we only use some of the most effective
features that can be calculated rapidly, such as color contrast
and location features. As our goal in this step is to “approxi-
mately” find the salient regions of an image, we found that the
salient region could be found accurately using even a smaller
number of features. By allowing for the classification of some
ambiguous regions as unknown, we can further improve the
accuracy of our initial saliency trimap.

A. Superpixel Saliency Features

As demonstrated in recent studies [33]–[36], features from
superpixels are effective and efficient for salient object detec-
tion. For an input image I , we first perform over-segmentation
to form superpixels X = {X1, . . . , X N }. We use the SLIC
superpixel [1] because of its low computational cost and
high performance, and we set the number of superpixels
to N = 500.

To build feature vectors for saliency detection, we combine
multiple information that are commonly used in saliency
detection. We first concatenate the superpixels’ x- and
y-locations into our feature vector. The location feature is used
because humans tend to focus more on objects that are located
around the center of an image [18]. Then, we concatenate the
color features, as this is one of the most important cues in
the human visual system and certain colors tend to draw more
attention than others [35]. We compute the average pixel color

and represent the color features using different color space
representations.

Next, we concatenate histogram features as this is one
of the most effective measurements for the saliency feature,
as demonstrated in [33]. The histogram features of the i th

superpixel DHi is measured using the chi-square distance
between other superpixels’ histograms. It is defined as

DHi =
N∑

j=1

b∑

k=1

(hik − h jk)
2

(hik + h jk)
, (1)

where b is the number of histogram bins. In our work, we
used eight bins for each histogram.

We have also used the global contrast and local contrast as
color features [7], [19], [34]. The global contrast of the i th

superpixel DGi is given by

DGi =
N∑

j=1

d(ci , c j ), (2)

where d(ci , c j ) denotes the Euclidean distance between the i th

and the j th superpixels’ color values, ci and c j , respectively.
We use the RGB, CIELab, hue, and saturation of eight color
channels to calculate the color contrast feature so that it has
eight dimensions. The local contrast of the color features DLi

is defined as

DLi =
N∑

j=1

ω
p
i, j d(ci , c j ) (3)

ω
p
i, j = 1

Zi
exp

(
− 1

2σ 2
p

∥∥pi − p j
∥∥2

2

)
, (4)

where pi ∈ [0, 1] × [0, 1] denotes the normalized position
of the i th superpixel and Zi is the normalization term. The
weight function in Eq. (4) is widely used in many applications
including spectral clustering [13]. We adopt this function to
give more weight to neighboring superpixels. In our experi-
ments, we set σ 2

p = 0.25. In addition to the global and local
contrast, we further evaluate the element distribution [34] by
measuring the compactness of colors in terms of their spatial
color variance.

For texture and shape features, we utilize the superpixel
area, histogram of gradients (HOG), and singular value feature.
The HOG provides appearance features using the pixels’
gradient information at a fast speed. We use the HOG features
implemented by Felzenszwalb et al. [22], which have 31
dimensions. The singular value feature (SVF) [23] is used to
detect the blurred region from a test image because a blurred
region often tends to be a background. The SVF is a feature
based on eigenimages [25], which decompose an image by
a weighted summation of a number of eigenimages, where
each weight is the singular value obtained by singular value
decomposition. The eigenimages corresponding to the largest
singular values determine the overall outline of the original
image, and other smaller singular values depict detailed infor-
mation. Therefore, some of the largest singular values occupy
much higher weights for blurred images.
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TABLE II

COMPARISON OF TRIMAP PERFORMANCE ON MSRA-B DATASET [49]

The aforementioned features are concatenated and are used
to generate our initial saliency trimap. Table I summarizes
the features that we have used. In short, our superpixel
feature vectors consist of 71 dimensions that combine multiple
evaluation metrics for saliency detection.

B. Initial Saliency Trimap via Random Forest Classification

After we calculate the feature vectors for every superpixel,
we use a classification algorithm to check whether each
region is salient. In this study, we use the random forest [50]
classification because of its efficiency on large databases and
its generalization ability. A random forest is an ensemble
method that operates by constructing multiple decision trees
at training time and decides the class by examining each
tree’s leaf response value at test time. This method combines
the bootstrap aggregating idea and random feature selection
to minimize the generalization error. To train each tree, we
sample the data with the replacement and train a decision tree
with only a few features that are randomly selected. Typically,
a few hundred to several thousand trees are used, as increasing
the number of trees tends to decrease the variance of the
model.

In our previous work [2], we used a regression method to
estimate the saliency degree for each superpixel and classi-
fied it via adaptive thresholding. As our goal is to classify
each superpixel as foreground and background, we found
that using a classification method is more suitable than the
regression for trimap generation. Table II shows a comparison
of the trimap performance, in which the Fg. Precision (FP ),
Bg. Precision (BP), error rate (ER) are defined as below:

FP = |{FC} ∩ {FGT }|
|{FC}| , (5)

BP = |{BC} ∩ {BGT }|
|{BC}| , (6)

ER = |({FC} ∩ {BGT }) ∪ ({BC} ∩ {FGT })|
|{I }| , (7)

in which | · | denotes the number of pixels, FC and BC

denote the foreground/background candidates, FGT and BGT

denote the ground-truth annotations’ foreground/background,
respectively, and I denotes the whole image. The error
rate (ER) denotes the ratio of the area of misclassified regions
to the image size, and the unknown rate is the ratio of the
area of the regions classified as unknown to the image size.
We used 2,500 images from the MSRA-B dataset [49], which
are selected as a training set from Jiang et al. [33] for training
data, and we used the annotated ground truth images for labels.
We generated N feature vectors for each image. In total, we
have approximately one million vectors for the training data.

Fig. 3. Some results of the initial saliency trimap. (a) Input image. (b) Binary
map without unknown region. (c) Our initial saliency trimap with unknown
region indicated in gray color. (d) Ground truth.

We used the code provided by Becker et al. [51] for random
forest classification. In our implementation, we use 200 trees
and we set the maximum tree depth to 10.

From the outputs of the random forest, we use a
three-class classification to generate a trimap, instead of a
binary classification, to detect highly reliable foreground/
background regions. Trimap has been commonly used in
matting methods [31], [32]. In our work, we use the concept
of trimap at the initial saliency estimation step. We set the
relatively reliable regions of salient and non-salient regions
to foreground or background respectively, and consider the
ambiguous regions as unknown. Fig. 3 shows a visual example
of an initial trimap. Compared to the binary maps without
unknown regions, we found that classifying ambiguous regions
as unknown regions can help to obtain more reliable locations
of salient regions. We decided whether each superpixel belongs
to foreground candidate, background candidate, or unknown
regions using the response value extracted from the classifier.
In our experiments, we used threshold values T f ore = 1 and
Tback = −1. If a superpixel’s response value exceeds T f ore,
then it belongs to the foreground; however, if the value is lower
than Tback , then it belongs to the background; otherwise, it is
considered as unknown.

IV. SALIENCY ESTIMATION FROM TRIMAP

In this section, we present our global salient region detection
via HDCT and learning-based local salient region detection,
and we describe a step-by-step process to obtain our final
saliency map starting with the initial saliency map.

In section IV-A, we propose a global saliency estimation
method via HDCT [2]. The idea of global saliency esti-
mation implicitly assumes that pixels in the salient region
have independent and identical color distribution. With this
assumption, we depict the saliency map of a test image
as a linear combination of high-dimensional color channels
that distinctively separate salient regions and backgrounds.
In section IV-B, we propose a local saliency estimation via
learning-based regression. Local features such as color contrast
can reduce the gap between an independent and identical color
distribution model implied by HDCT and true distributions of
realistic images. In section IV-C, we analyze how to combine



14 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

Fig. 4. Illustrations of linear coefficient combinations for HDCT-based
saliency map construction. The first column images are input original images,
the second column images are saliency maps which are obtained by using a
linear combination of RGB channels, and the third column images are ground
truth saliency maps.

these two maps to obtain the best result.

A. Global Saliency Estimation via HDCT

Colors are important cues in the human visual system.
Many previous studies [52] have noted that the RGB color
space does not fully correspond to the space in which the
human brain processes colors. It is also inconvenient to
process colors in the RGB space as illumination and colors
are nested here. Therefore, many different color spaces have
been introduced, including YUV, YIQ, CIELab, and HSV.
Nevertheless, which color space is the best for processing
images remains unknown, especially for applications such as
saliency detection, which are strongly correlated to human
perception. Instead of picking a particular color space for
processing, we introduce a HDCT that unifies the strength
of many different color representations. Our goal is to find
a linear combination of color coefficients in the HDCT space
such that the colors of salient regions and those of backgrounds
can be distinctively separated. Fig. 4 illustrates the idea of
using the linear combination of color coefficients for saliency
detection.

To build our HDCT space, we concatenate different
nonlinear RGB transformed color space representations, as
illustrated in Fig. 5. We concatenate only the nonlinear RGB
transformed color space, because the effects of the coefficients
of a linear transformed color space such as YUV/YIQ will
be cancelled when we linearly combine the color coefficient
to form our saliency map. The color spaces we concatenated
included the CIELab color space and the hue and saturation
channel in the HSV color space. We also included color gradi-
ents in the RGB space as human perception is more sensitive
to relative color differences than absolute color values. The

Fig. 5. Our HDCT space. We concatenate different nonlinear RGB trans-
formed color space representations to form a high-dimensional feature vector
to represent the color of a pixel.

TABLE III

SUMMARY OF COLOR COEFFICIENTS CONCATENATED

IN OUR HDCT SPACE

different magnitudes in the color gradients can also be used
to handle cases in which salient regions and backgrounds have
different amounts of defocus and different color contrasts.
In summary, 11 different color channel representations are
used in our HDCT space.

To further enrich the representative power of our HDCT
space, we apply power-law transformations to each color
coefficient after normalizing the coefficient between [0, 1].
We used three gamma values: {0.5, 1.0, and 2.0}.1 This
resulted in a high-dimensional matrix to represent the colors
of an image:

K =

⎡
⎢⎢⎢⎢⎣

Rγ1
1 Rγ2

1 Rγ3
1 Gγ1

1 · · ·
Rγ1

2 Rγ2
2 Rγ3

2 Gγ1
2 · · ·

...
...

...
...

...

Rγ1
N Rγ2

N Rγ3
N Gγ1

N · · ·

⎤
⎥⎥⎥⎥⎦

∈ R
N×l , (8)

in which Ri and Gi denote the test image’s i th superpixel’s
mean pixel value of the R color channel and G color
channel, respectively. By using 11 color channels such as
RGB, CIELab, hue, and saturation, we can obtain an HDCT
matrix K with l = 11 × 3 = 33.

The nonlinear power-law transformation takes into account
the fact that our human perception responds nonlinearly to
incoming illumination. It also stretches/compresses the inten-
sity contrast within different ranges of color coefficients.
Table III summarizes the color coefficients concatenated in
our HDCT space. This process is applied to each superpixel
in an input image individually.

1In our previous study [2], we used four values {0.5, 1.0, 1.5, and 2.0}.
However, we found that γ = 1.5 does not provide a great performance
improvement. Therefore, we only used three values to reduce redundancy.
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Fig. 6. A test images’ superpixel data visualization using LDA [24], with x-axis as the response value and y-axis as the distribution. We used different color
channels for visualization: (a) only RGB; (b) RGB with power-law transformations; (c) RGB, CIELab, hue, and saturation; and (d) RGB, CIELab, hue, and
saturation with power-law transformations. The overlap rate is (a) 16.49%, (b) 11.52%, (c) 9.92%, and (d) 5.84%.

To evaluate the effectiveness of the multiple color
channels and power-law transformations, we use the LDA
projection [24] on the 2,500 training images in the MSRA-B
dataset [49] as used by Jiang et al. [33] to calculate the
projection matrix and use the 500 validation set images for
visualization. A self-comparison of our HDCT via LDA with
other combinations of color channels is shown in Fig. 6.
The result shows that the performance is undesirable when
only RGB is used and that using various nonlinear RGB
transformed color spaces and power-law transformations
helps to classify the salient regions more accurately.

To obtain our saliency map, we utilize the foreground
candidate and background candidate color samples in our
trimap to estimate an optimal linear combination of color
coefficients to separate the salient region color and background
color. We formulate this problem as a l2 regularized least
squares problem that minimizes

min
α

∥∥(U − K̃α)
∥∥2

2 + λ‖α‖2
2, (9)

where α ∈ R
l is the coefficient vector that we want to estimate,

λ is a weighting parameter to control the magnitude of α, and
K̃ is a M×l matrix with each row of K̃ corresponding to color
samples in the foreground/background candidate regions:

K̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rγ1
F S1

Rγ2
F S1

Rγ3
F S1

Gγ1
F S1

· · ·
...

...
...

...
...

Rγ1
F S f

Rγ2
F S f

Rγ3
F S f

Gγ1
F S f

· · ·
Rγ1

BS1
Rγ2

BS1
Rγ3

BS1
Gγ1

BS1
· · ·

...
...

...
...

...

Rγ1
BSb

Rγ2
BSb

Rγ3
BSb

Gγ1
BSb

· · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where FSi and BSj denote the i th foreground candidate
superpixel among entire superpixels and the j th background
superpixel among entire superpixels that are classified at the
trimap generation step, respectively. M is the number of
color samples in the foreground/background candidate regions
(M � N), and f and b denote the number of foreground and
background regions, respectively, such that M = f + b. U is
an M dimensional vector with value equal to 1 and 0 if a color
sample belongs to the foreground and background candidate,

Algorithm 1 HDCT-Based Saliency Estimation

respectively:

U = [ 1 1 · · · 1
︸ ︷︷ ︸

f 1’s

0 0 · · · 0
︸ ︷︷ ︸

b 0’s

]T ∈ R
M×1. (11)

Since we have a greater number of color samples than
the dimensions of the coefficient vector, the l2 regularized
least squares problem is a well-conditioned problem that can
be readily minimized with respect to α as α∗ = (K̃T K̃ +
λI)−1K̃T U. In all experiments, we use λ = 0.05 to produce
the best results. After we obtain α∗, the saliency map can be
constructed as

SG(Xi ) =
l∑

j=1

Ki j α
∗
j , i = 1, 2, · · · , N, (12)

which denotes the linear combination of the color coefficient
of our HDCT space. The l2 regularizer in the least square
formulation in Eq. (9) restricts the magnitude of the coefficient
vector to avoid over-fitting to U. With this l2 regularizer, the
constructed saliency map is more reliable for the both fore-
ground and background superpixels that are initially classified
in the trimap. We tested several values of λ, and the regularized
l2 least square with nonzero λ produces better saliency maps
than the least square method without regularizer (λ = 0). Note
that the popular l1 regularizer for sparse solution could also be
considered, but the l1 regularizer is not essential in our work,
since more accurate representation of both foreground and
background superpixels in HDCT space is important. Also,
it is not necessary for the coefficient vector to be sparse.
The overall process of the HDCT-based saliency detection is
described in algorithm 1.
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Fig. 7. An illustration of local saliency features. Black, white, and gray
regions denote background superpixels, foreground superpixels, and unknown
superpixels, respectively. We use K -nearest foreground superpixels and
K -nearest background superpixels to calculate a feature vector.

B. Local Saliency Estimation via Regression

Although the HDCT-based salient region detection provides
a competitive result with a low false positive rate, this method
has a limitation in that it is easily affected by the texture
of the salient region, and therefore, it has a relatively high
false negative rate. To overcome this limitation, we present a
learning-based local salient region detection that is based on
the spatial and color distance from neighboring superpixels.

Table IV summarizes the features used in this section.
First, for each superpixel, we find the K -nearest foreground
superpixels and K -nearest background superpixels as
described in Fig. 7. For each superpixel Xi , we find the
K -nearest foreground superpixels XF S = {X F S1, X F S2, . . . ,
X F SK } and K -nearest background superpixels XBS =
{X BS1, X BS2, . . . , X BSK }, and we use the Euclidean distance
between a superpixel Xi and superpixels XF S or XBS as
features. The Euclidean distance to the K-nearest foreground
(dF Si ∈ R

K×1) and background (dBSi ∈ R
K×1) features of

the i th superpixel is defined as follows:

dF Si =

⎡

⎢⎢⎢⎢⎣

‖pi − pF Si1
‖2

2

‖pi − pF Si2
‖2

2
...

‖pi − pF SiK
‖2

2

⎤

⎥⎥⎥⎥⎦
, dBSi =

⎡

⎢⎢⎢⎢⎣

‖pi − pBSi1
‖2

2

‖pi − pBSi2
‖2

2
...

‖pi − pBSiK
‖2

2

⎤

⎥⎥⎥⎥⎦
,

(13)

in which FSi j denotes the j th nearest foreground superpixel
and BSi j denotes the j th nearest background superpixel from
the i th superpixel. As objects tend to be located in a compact
region in an image, the spatial distances between a candidate
superpixel and the nearby foreground/background superpixels
can be a very useful feature for estimating the saliency degree.
We also use the color distance features between superpixels.
The feature vector of color distances from the i th superpixel
to the K-nearest foreground (dC Fi ∈ R

8K×1) and background

TABLE IV

LOCAL SALIENCY FEATURES THAT ARE USED TO COMPUTE
THE FEATURE VECTOR FOR EACH SUPERPIXEL

Fig. 8. F-measure rate of validation results on different number of nearest
superpixels K as features in the MSRA-B dataset.

(dC Bi ∈ R
8K×1) superpixels is defined as follows:

dC Fi =

⎡
⎢⎢⎢⎢⎣

d(ci , cF Si1
)

d(ci , cF Si2
)

...

d(ci , cF SiK
)

⎤
⎥⎥⎥⎥⎦

, dC Bi =

⎡
⎢⎢⎢⎢⎣

d(ci , cBSi1
)

d(ci , cBSi2
)

...

d(ci , cBiK
)

⎤
⎥⎥⎥⎥⎦

. (14)

Although a superpixel located near the foreground superpix-
els tends to be a foreground, if the color is different, there is a
high possibility that it is a background superpixel located near
the boundary of an object. We use eight color channels—RGB,
CIELab, hue, and saturation—to measure the color distance,
where ci , cF Si j , and cBSi j are eight-dimensional color vectors.
The distance vector d(ci , cF Si j ) is also an eight-dimensional
vector, where each element of d(ci , cF Si j ) is the distance
in a single color channel. To decide the optimal number of
nearest superpixels K , we calculate the F-measure rate for
each parameter. Fig. 8 shows the result, and we set K = 25,
which shows the best result.2

For saliency estimation, we used the superpixel-wise
random forest [50] regression algorithm, which is effective
for large high-dimensional data. We extracted feature vectors
using the initial trimap, and then, we estimated the saliency
degree for all superpixels. For this local saliency map,

2In case we have fewer number of foreground/background superpixels,
we readjust the thresholds T f ore and Tback so that we have 25 fore-
ground/background superpixels in the trimap. This readjustment is only for
computing the local saliency map, and T f ore = 1 and Tback = −1 remain
unchanged when computing the global saliency map.
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Fig. 9. Comparison of precision-recall curves of each step on the MSRA-B
dataset.

even those classified as foreground/background candidate
superpixels in the initial trimap are reevaluated because they
could still be misclassified. It should be noted that the initial
trimap is generated by a random forest classifier and that the
next random forest regressor generates a local saliency map.
Considering that we have two stages of cascaded random
forests, we divided the training data set into two disjoint
sets so that the second random forest is trained with more
realistic inputs. Toward this end, we trained the first random
forest with one data set, and we obtained the training data
set for the second random forest from the trimaps generated
for the other data set, which is not used for training the first
random forest. This process is repeated in a manner similar
to five-fold cross-validation. We used the code provided
by Becker et al. [51] for random forest regression using
200 trees and setting the maximum tree depth to 10.

C. Final Saliency Map Generation

After we generated the global and the local saliency maps,
we combined them to generate our final saliency map. Fig. 10
shows some examples of the two maps. Table V shows
the quantitative performance measure of the two maps. The
examples show that the HDCT-based saliency map tends to
catch the object precisely; however, the false negative rate
is relatively high owing to textures or noise. In contrast,
the learning-based saliency map is less affected by noise,
and therefore, it has a low false negative rate but a high
false positive rate. Therefore, combining the two maps is a
significant step in our algorithm.

Borji et al. [38] proposed two approaches to combine the
two saliency maps. The first approach is to perform the pixel-
wise multiplication of the two maps, as shown below:

Smult = 1

Z
(p(SG) × p(SL)), (15)

in which Z is a normalization factor, p(.) is a pixel-wise
combination function, SG is the global saliency result
(Section IV-A), and SL is the local saliency result
(Section IV-B). However, this combination tends to show

TABLE V

QUANTITATIVE RESULTS OF HDCT-BASED GLOBAL SALIENCY
DETECTION AND REGRESSION-BASED LOCAL SALIENCY

ESTIMATION ON ADAPTIVE THRESHOLDED SALIENCY

MAP ON MSRA-B DATASET

Fig. 10. Some visual examples. (a) input image, (b) HDCT result, (c) local
saliency estimation result, (d) combined result, (e) ground truth, (f)–(g) are
adaptive thresholded maps of (b)–(d), respectively.

darker pixels and suppresses bright pixels, and therefore, some
false negative pixels from a global saliency map will suppress
the local saliency map, and the merit of the local saliency map
will decrease.

The second approach is to combine the two maps using a
summation:

Ssum = 1

Z
(p(SG) + p(SL)). (16)

In our study, we combine the two maps more adaptively
to maximize our performance. Based on Eq. (16), we adopt
p(x) = exp(x) as a combination function to give greater
weightage to the highly salient regions. The weight values are
determined by comparing the saliency map with the ground
truth. We calculate the optimal weight values for the linear
summation by solving the nonlinear least-squares problem, as
shown below:

min
ω1≥0,ω2≥0,
ω3≥0,ω4≥0

‖ω1 p(ω2SG) + ω3 p(ω4SL) − GT ‖2
2 , (17)

in which GT is the ground truth of an image in the train-
ing data. To find the most effective weights, we iteratively
optimize the nonnegative least-squares objective function in
Eq. (17) with respect to each variable. As the objective
function in Eq. (17) is bi-convex, it must converge after a
few optimization steps; however, different local solutions are
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Fig. 11. Comparison of the precision-recall curve with state-of-the-art algorithms on three representative benchmark datasets: MSRA-B dataset, ECSSD
dataset, and PASCAL-S dataset.

obtained by the different initializations. To obtain the best
solution (i.e., the solution that yields the smallest value of the
objective function in Eq. (17) among several local solutions),
we repeat the optimization process with randomly initialized
variables several times, and the final solution for the objective
function in Eq. (17) is obtained as ω1 = 1.15, ω2 = 0.74,
ω3 = 1.57, and ω4 = 0.89. Fig. 9 shows the precision-recall
curve of the combined map. We found that our performance
further improves with the values of the solution. Finally, we
defined the equation of the final saliency map combination as

S f inal = 1

Z
(ω1 p(ω2SG) + ω3 p(ω4SL)). (18)

Fig. 10 (d) shows some examples of a combined map.
We observe that the performance greatly improves after com-
bining the two maps: highly salient regions that have been
caught by the local saliency map are preserved, and the false
negative region that is vaguely salient is discarded.

To evaluate the effectiveness of our local saliency estima-
tion, we compare the precision-recall curve with that of the
spectral matting algorithm [48] that extracts foregrounds from
the user input. We use the trimap result instead of the user
input for automatic matting. Fig. 15 (h) shows some results.
Although the matting algorithm can provide a reasonable result
without being influenced by textures, we found that the matting
method heavily relies on the input trimap and is therefore
easily affected by misclassified superpixels. On the other hand,
the learning-based method can determine the saliency degree
by observing the spatial distribution of the nearest foreground
and background superpixels, and therefore, our method is

more robust to misclassified errors. Fig. 9 shows that the
learning-based method provides a better result than the matting
algorithm.

V. EXPERIMENTS

We evaluate and compare the performances of our algorithm
against previous algorithms, including those proposed by
Zhai and Shah (LC) [9], Cheng et al. (HC, RC) [19],
Shen and Wu (LR) [35], Perazzi et al. (SF) [34],
Yan et al. (HS) [14], Yang et al. (GMR) [36],
Jiang et al. (DRFI) [33], Li et al. (DSR) [39],
Cheng et al. (GC) [40], Jiang et al. (MC) [41], and
Zhu et al. (RBD) [42] as well as our own preliminary
work (HDCT) [2] on three representative benchmark datasets:
MSRA-B salient object dataset [49], Extended Complex
Scene Saliency Dataset (ECCSD) [14], and PASCAL-S
Dataset [44].

A. Benchmark Datasets for Salient Region Detection

1) MSRA-B Dataset: The MSRA-B salient object
dataset [49] contains 5,000 images with the pixel-wise ground
truth used by the authors provided by Jiang et al. [33].
This dataset mostly contains comparatively obvious salient
objects in which the colors are definitely different from
the background, and therefore, it is considered a less
challenging dataset for salient object detection. We use the
same training set including 2,500 images and the test set
including 2,000 images used in [33] as the training and test
data, respectively.
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Fig. 12. Comparison of the F-measure curve with 12 state-of-the-art algorithms on three representative benchmark datasets: MSRA-B dataset, ECSSD dataset,
and PASCAL-S dataset.

TABLE VI

COMPARISON OF THE PRECISION, RECALL, AND F-MEASURE RATE OF THE ADAPTIVELY THRESHOLDED SALIENCY MAP WITH STATE-OF-THE-ART

ALGORITHMS ON THREE REPRESENTATIVE BENCHMARK DATASETS: MSRA-B DATASET, ECSSD DATASET, AND PASCAL-S DATASET.
THE THREE BEST RESULTS ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY

TABLE VII

COMPARISON OF AVERAGE RUN TIME (SECONDS PER IMAGE) OF THE MOST RECENT SALIENCY DETECTION ALGORITHMS

2) ECSSD Dataset: The ECSSD dataset [14] contains
1,000 images that include multiple salient objects with struc-
turally complex backgrounds that make the detection task
much more challenging, such as a green apple on a tree or
a yellow butterfly on yellow flowers. In addition, many images
contain a single salient object with multiple colors, making
it harder to detect the salient object entirely. We used all
images from this dataset for testing using the pixel-wise binary
ground-truth images.

3) PASCAL-S Dataset: The PASCAL-S dataset [44] con-
tains 850 images with multiple objects in a single image with
pixel-wise ground-truth annotations. This dataset provides

both fixations and salient object annotations. However, this
dataset is challenging as it contains many test images with very
large or very small salient objects that are relatively difficult
to detect entirely. We used all images from this dataset for
testing using the pixel-wise binary ground-truth images.

B. Performance Evaluation

In our study, we use two standard criteria for evaluating
our salient region detection algorithm: precision-recall rate and
F-measure rate. These evaluation criteria were proposed by
Achanta et al. [7], and most saliency detection methods are
evaluated by these criteria [3], [4].
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Fig. 13. Some failure cases in PASCAL-S dataset [44]. (a) Original Image.
(b) Ground Truth. (c) DRFI [33]. (d) DRFI+ours.

1) Precision-Recall Evaluation: The precision is also called
the positive predictive value, and it is defined as the ratio of
the number of ground-truth pixels retrieved as a salient region
to the total number of pixels retrieved as the salient region.
The recall rate is also called the sensitivity, and it is defined
as the ratio of the number of salient regions retrieved to the
total number of ground-truth regions. We use two different
approaches to examine the precision-recall rate. The first is
to measure the rate for each pixel threshold. We bi-segment
the saliency map using every threshold from 0 to 255 and
calculate the precision rate and recall rate to plot the precision-
recall curve with the x-axis as the recall rate and the y-axis
as the precision rate. The second is the precision and recall
rate determined from the adaptively thresholded saliency map.
In [7], [34], and [35], the threshold value is defined as two
times the mean value of the saliency map. However, as recent
saliency detection datasets, such as PASCAL-S [44], include
some test images that contain a salient object that is larger than
the background, we found that two times the mean value of
the saliency map is not suitable for thresholding. Instead, we
used the Otsu adaptive thresholding algorithm [47] to obtain
the thresholded saliency map. We calculated the precision and
recall rate for every thresholded saliency map and evaluated
it by averaging these values.

2) F-Measure Rate Evaluation: The second evaluation
index is the F-measure rate. The F-measure combines the
precision and the recall rate for a comprehensive evaluation.
In our study, we used the Fβ measure, as defined below:

Fβ = (1 + β2) · Precision · Recall

β2 · Precision + Recall
. (19)

As in previous methods [7], [14], [35], we used β2 = 0.3.
Similarly, as the precision-recall curve, we bi-segmented the
map for every threshold and plotted the curve with the x-axis
as the threshold and the y-axis as the F-measure rate. We also
measured the F-measure rate from the adaptively thresholded
saliency map. First, we drew the precision-recall (PR) curve
and the F-measure curve of our entire algorithm, and to verify
the effectiveness of saliency estimation after the trimap step,
we used the final result obtained in Jiang et al. [33], which
is a state-of-the-art method, as an initial map and used a
simple thresholding method to transform it into a trimap.
In Fig. 11, we indicate the PR curve of our entire algorithm as
“Ours” and that of the DRFI method-based trimap and our final
saliency estimation algorithm as “DRFI+Ours.” Similarly,
in Fig. 12, we show the F-measure curve of the state-of-

Fig. 14. Some examples of failure cases. (a) Input images. (b) Our initial
trimap. (c) Our results. (d) Ground truth.

the-art algorithms, including our method. Table VI shows the
quantitative performance analysis of the adaptively thresholded
saliency map. The results show that our methods achieved
a competitive performance compared to the other methods, and
when we substituted the DRFI [33] result map for the initial
trimap, our method further improved the map and attained the
best performance compared to the other algorithms.

To further demonstrate the efficiency of our algorithm,
we show the average computational time for each image
of the state-of-the-art methods, including our algorithm.
Table VII shows a comparison of the average run times of the
three state-of-the-art methods. The running time is measured
on a computer with an Intel Dual Core i5-2500K
3.30 GHz CPU. Considering that our method is implemented
by using MATLAB with unoptimized code, the computational
complexity of the proposed method is comparable to that of
other methods.

The experimental results show that our algorithm is effective
and computationally efficient. Although our algorithm does not
outperform DRFI [33], its computational speed is much higher.
The result for the case in which we substitute the results of
DRFI [33] for the initial trimaps indicates that if we obtain
the trimap more accurately, we have more potential to obtain
a better result. Fig. 15 shows some examples of salient object
detection that demonstrate the effectiveness of our proposed
method.

In the PASCAL-S dataset, we found that the PR curve
of DRFI+ours does not improve compared with DRFI.
Fig. 13 shows some failure cases. As our method uses a fixed
number of fore-/background superpixels K , our algorithm
tends to highlight the most salient region with moderate size;
therefore, our method is relatively weak against test images
with very large or very small salient regions. In the case of
the MSRA-B and ECSSD datasets, the DRFI+ours method
shows the best performance compared with the other state-of-
the-art methods, as they contain images with salient regions
of moderate size.

C. Failure Cases

Although our method detects most salient objects accurately,
it still has some limitations. For example, our HDCT might not
fully coincide with human vision. However, it is still effective
in increasing the success of foreground and background color
separation as the low-dimensional RGB space is very dense
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Fig. 15. Comparisons of our results and the results of previous methods. (a) Test image, (b) ground truth, (c) ours, (d) DRFI [33]+ours, (e) RBD [42],
(f) DRFI [33], (g) HDCT [2], (h) matting [48], (i) GMR [36], (j) HS [14], (k) DSR [39], (l) GC [40], (m) MC [41], (n) SF [34], (o) LR [35], (p) RC [19],
and (q) HC [19].

where distributions of the foreground and background colors
largely overlap, whereas in high-dimensional color space, the
space is less dense and the overlap decreases, as shown
in Fig. 6. Furthermore, if identical colors appear in both the
foreground and the background or the initialization of the
color seed estimation is very wrong, our result is undesirable.
Fig. 14 shows some examples of failure cases. In the first row,
the foreground and background have exactly the same color,
and therefore, the initial trimap fails to classify the object as
foreground. In the second row, the dog has the same color
as the background, and therefore, our method only detects
its tongue, which is of a different color compared to the
background.

VI. CONCLUSION

We have presented a novel salient region detection method
that estimates the foreground regions from a trimap using
two different methods: global saliency estimation via HDCT
and local saliency estimation via regression. The trimap-based
robust estimation overcomes the limitations of inaccurate
initial saliency classification. As a result, our method achieves
good performance and is computationally efficient in com-

parison to the state-of-the art methods. We also showed that
our proposed method can further improve DRFI [33], which
is the best performing method for salient region detection.
In the future, we aim to extend the features for the initial
trimap to further improve our algorithm’s performance.
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